Analytics¶
%%capture
!pip install labml
from labml import analytics
Load runs¶
You can load runs with runs()
.
We are analysing some sample projects: * Predicting the stock price of next 5 minutes * Counterfactual Regret Minimization with Kuhn Poker,
stocks = analytics.runs('d76d3922a8a211eaa7a2857d91b0cff2')
kuhn = analytics.runs('90a456ee9b1c11eaaf7bf218981c2492')
dir
gives all the available indicators and artifacts for the run(s).
dir(stocks)
['model_final_conv_bias',
'model_final_conv_bias_grad',
'model_final_conv_weight',
'model_final_conv_weight_grad',
'model_layers_0_conv_bias',
'model_layers_0_conv_bias_grad',
'model_layers_0_conv_weight',
'model_layers_0_conv_weight_grad',
'model_layers_1_conv_bias',
'model_layers_1_conv_bias_grad',
'model_layers_1_conv_weight',
'model_layers_1_conv_weight_grad',
'train_loss',
'valid_loss',
'valid_output',
'valid_ref',
'valid_strike_high',
'valid_strike_low',
'valid_target']
Distribution plot¶
distribution()
plots the distribution of given set of
indicators. Multiple indicators can be merged with +
.
The plots are rendered with Altair. The smaller minimap below the main plot can be used to zoom in.
We are setting a smaller width to fit-in to the Read The Docs theme
analytics.distribution(stocks.valid_loss + stocks.train_loss,
width=400, height=300, height_minimap=50)
analytics.distribution(kuhn.average_strategy_Q_b + kuhn.average_strategy_Kb_b +
kuhn.strategy_Q_b + kuhn.strategy_Kb_b,
width=400, height=300, height_minimap=50)